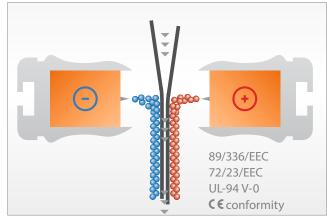


a Gema division

Electrostatic charging system

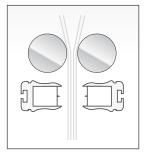
iONtacker FUSION

0-20/30/40kV

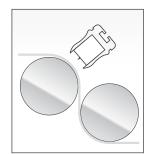

Electrostatic charging system

System description

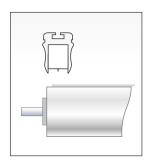
iONtacker FUSION is the latest generation of electrostatic charging systems. The high voltage power supply is integrated inside the charging electrode profile. High voltage cables with their problems and disadvantages are history. A simple 24 Volt DC supply is sufficient. SET-point value and ACTUAL value are available in 0-10V at the 8 pin connector. An external reading of the kV as well as mA values is therefore possible at any time. An optional iONpower RC module allows independent control of the iONtacker FUSION system.

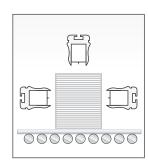

The system utilises the latest high voltage decoupling technology with resistors located in front of each high voltage emitter point. A 5mm pin pitch makes iONtacker FUSION a class leading system. Our unique Tungsten Steel "Long Life" emitter pins increase the life time of the emitter points and guarantees a constant high performance during its full life cycle. These emitter pins generate ions to produce a contactless charge on the

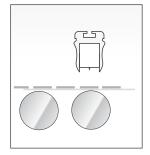
substrate surface and as a result generate the so called " electrostatic gluing effect".



Charging system principle of operation

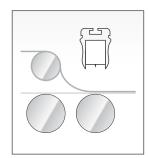

Typical applications:


Ribbon tacking


Chill-Roll tacking

Edge pinning

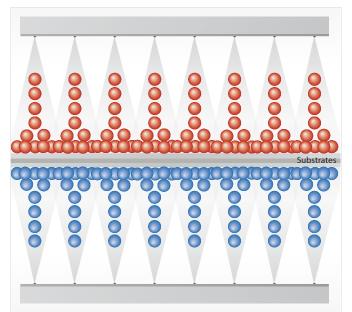

Stack tacking


Bonding

Reel change

In mould labeling

Laminating



a Gema division

Technology

The iONtacker FUSION charging system is designed to apply electrostatic charges to an insulating substrate surface. In order to charge the substrate a suitable opposite field polarity is essential. If this opposite polarity cannot be ensured via a machine metal/ground an opposite polarity charging electrode must be installed. The charging bar itself needs to be installed at a defined distance to the substrate surface depending on its use and application. The substrate will pass in between the two electrode polarities. Due to the high voltage generated at the emitter pins, the ions generated settle on the insulating substrate surface. They try to recombine with the opposite charge ion on the other substrate side and therefore generate, due to the insulation of the substrate in between, an electrostatic bonding.

The pin material and shape are optimized to achieve the longest possible life time and the most efficient ion emission for the complete life cycle of the electrode.

Ion flow

Options:

- 0~20kV / 0~30kV / 0~40kV
- Positive or negative output voltage
- Voltage or current regulated
- Short circuit proof electrode design

Our experienced application engineers can assess your machine and advise on how to effectively install the iON-tacker FUSION into your production process to achieve the best possible electrostatic bonding.

iONtacker FUSION System advantages

Application:

- HV power supply integrated inside electrode profile; 24V DC supply voltage
- 5 mm pin pitch for maximum ion emission / bonding force
- Tungsten "Longlife" pin material
- No high voltage cables

Economical:

- Increased productivity and quality
- Extended electrode life time

Safety:

- External Enable / Disable to control high the voltage output
- "Touch proof" due to current limitation

Ecological:

- Used power according application
- Lowest energy consumption in its class

Gema Switzerland GmbH Mövenstrasse 17 CH-9015 St.Gallen

a Gema division

Fon +41 71 313 83 00 Fax +41 71 313 83 83 info@hildebrand-technology.com www.hildebrand-technology.com

